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Plasma electric microfield distribution with the triplet correlation contribution:
High-frequency component at a neutral point
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We report on nontrivial calculations of a triplet correlation contribution to the high-frequency component of
the microfield distribution at a neutral particle point by utilizing an expansion, initially proposed by Baranger
and Mozer, and demonstrate that its contribution leads to a shift of the maximum in the distribution to weaker
fields relative to results including the pair correlation only. The entire picture of the high-frequency microfield
distribution is studied and detailed comparison with the results of Hooper is made.
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[. INTRODUCTION atom, no correlation ties it to neighboring plasma particles.
Since the work of HoltsmarK1], who completely ne-
fected correlations between particles, most of all efforts

Instance, an excne}tlon of el$ﬁtrons n gtoms and c'jo.ns of ;h ave been concentrated on a theory of the microfield distri-
matter, permanently occur. The excited atoms and 10ns thef) sinn with inclusion of collective events in plasmas. The

get rid of the surplus energy by radiating electromagnetiGy i remarkable advance in this direction was made by

waves(photons. It is natural that all processes, being in @ garanger and Mozef2,3], who wrote the distributions of
plasma, may, at a different extent, influence its characteriss high- and low-frequency components of the microfield
t'r(]:s' Cl)n the Oth;.r hand, allﬁthe %h(;no_menla, tqklng_ pli?ﬁd'ﬂistribution as expansions with respect to the correlation
F € plasma meacium, are a ected by its e eCt.”C MICronielt g, nctions which then had been terminated at the pair corre-
l.e., the electric field produced by all charges in the plasmaiqn 16 do that they applied the Debye-Hiickel form of the
which, thlus, is of glsreat |rr:1portan(|:_eC;n thehtheory and afppr|]l- air correlation function that corresponds to the first order of
cations. In particular, when applied to the process of theyq expansion in a nonideality parameter. It was argued how-

radiation of excited atoms and ions, the electric microfield is,,,o; that such an approach is only valid for low-density,

k?own to |b|e responsible for the so-called Stark broaden'n%igh-temperature plasmas where a deviation from the Holts-
of spectral lines. - S o mark original distribution, corresponding to the first term in
The problem of determining electric microfield distribu- the series, is not large. Afterwards Hooper and Tighes]
tions is conventionally divided into two parts due to the ex- ey mylated this expansion in terms of other functions by
istence of two different time scales in plasmas. On the tim&,,q,cing a free parameter which had been chosen on the
scale comparable to the electron relaxation time the plasmg,qis of an argument of arriving at a plateau where there was

medi.um may be considergq a gas of electrong immersed inl‘?b dependence on the free parameter itself. To improve these
positively charged neutralizing background of ions and, thusresuItS Iglesias and Hoop§T] included in the analysis the

the Coulomb forces act at the observation point to generatg e chain cluster expansion similar to that of Ursell and

the microfield distribution which is then called the high- Mayer [8]. Quite an analogous approach, now known as

frequency component since the electron relaxation time i%PEX was proposed by Iglesias, Lebowétzal. [9-11] but

dramatically less in magnitude than the ion one. The IO.W'the free parameter, called adjustable, had been picked out to

G . . ; _%atisfy the exactly known second moment rule for the elec-
relaxation time scale, is then introduced by the notion that itic field strength. In the early 1980s, following the idea of

is governed by the dynamics of ion_s, surrounded by electrorI\‘/Iorita on the similarity of the representation of the mi-
clouds, and, consequently, the shielded Coulomb forces & fie|q gistribution to that of the excess chemical potential,

the observation po"?‘ shpuld thorpug_hly .be cqnsidered. SincF‘glesias[lZ] virtually reduced the problem to determination
the theory of the microfield distribution is chiefly supposed ot w6 radial distribution function for a fictious system with

to be applicable to the problem of spectral line broadening an, imaginary part of the interaction potential energy. Em-

|mp9r|'cant qhuestt;on IS \{vhat IS It at tTIe dobse:jyatmn p8|_r]1ct_. Aploying this idea allowed Ladfl3,14 to develop an integral
particle at the observation point is called a radiator and It it1Sq ation technique for calculating the radial distribution
an ion, its correlation with the surrounding plasma mediu

. . MEOIUMy nction and good agreement was discovered with computer
should necessarily be taken into account, whereas if it is aQi, ;iations
Another point of interest is an inclusion of quantum me-
chanical effects. It was done by Held and co-workers
*Electronic address: marie-madeleine.gombert@pgp.u-psud.fr [15-17 at high temperatures when the Landau length is

In real plasmas various elementary processes, such as, f
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smaller than the thermal de Broglie wavelength of electronsthat the system under consideration is the one-component,
In this particular low-density case it becomes possible tcelectron plasma, i.e., a gas of electrons moving in a uniform
utilize a semiclassical approach with a properly defined pairneutralizing background of positively charged ions.

wise pseudopotential mod¢l8-2(0. The pseudopotentials The first value relevant to the problem of the microfield
and the corresponding correlation functions were then usegistribution is the distance, very close, in sense of magni-

in the framework of the Baranger-Mozer expansion to findyde, to the mean interelectron spacing and it is defined as
both a very rich picture for the microfield distribution behav-

ior, depending on plasma parameters chosen, and agreement 4 323

with another approach as wéf1]. One of the other possible 15(2m) gy =1, (1)
approaches to the problem is the density-response formalism

of quantum liquids. The first attempt in this direction waswhere n denotes the equilibrium electron number density.
undertaken by Iglesias and Hoopi@2], who assumed the Using Eq.(1) the electric field strength is suitably normal-
response function to acquire a form of the random phasged through

approximation. Later Ichimaru and Yg23] extended this

approach to strongly coupled plasmas by introducing a local C

field correction. Another very sophisticated method was put B=—. (2
forward by Perrot and Dharma-Wardaf#]. It is based on Eo

the density functional theory with partial resummation of

higher-order terms in the Baranger-Mozer seli2§] and  Here E,=e/aZ ande refers to the magnitude of the elemen-
takes into consideration such factors as an internal structufigyry electric charge.

of the test particle and strong coupling. More detailed analy- pegpite the definition in Eq) all distances and vectors

sis of these and other aspects of the microfield distribution, \what follows are made dimensionless by using the Debye
problem may be found in the exhaustive revig2@). electron length\p = (kgT/4mne?) 2 as
When the motion of perturbing ions and the radiator can- b7

not be ignored any longer during the radiation process of the
test particle an appropriate consideration of dynamical ef-
fects turns essentigl7,28. On the other hand effects of
strong coupling can establish nonuniformity of the electric
microfield distribution caused by multipole moments of the ; R
plasma systenj29-33. That is why, at present, there is a mgeétlaekgr%is;gnma;z?attzfeBoltzmann constant dnsignifies
trend to incorporate dynamical effects and strong coupling To measure importan.ce of interparticle correlations in

phenomena as well which can give rise to the nonuniformity | h lati ) v introduced vi
of the electric microfield distribution and, as a result, to theP'2Smas the correlation parameyels merely introduced via

asymmetry of spectral line shapes. the ratio of the parametex, and the Debye electron length
It is worthwhile emphasizing that until now most of all Ao,

works accumulated the pair correlation approach when two

perturbers create the microfield distribution at the observa- ag

tion point and are correlated with each other and with the y= A

radiator due to the reciprocal interaction of plasma particles. b

In contrast, we report on direct calculations in which a third L ) . .
perturber is involved. For this purpose we choose the tech@nd it is easily related to the standard nonideality plasma

nique, proposed by Baranger and Mozer, because it is esseR@rameter, defined through the _ratio of the Landau length
tially free of any crucial physical assumption and, thus, it iseL=€"/ksT and the Debye screening radius or to the more
mostly as primary as computer simulations. The only restrictisual Coulomb coupling parameteray (47mn/3)"* as

tion comes from the fact that the Baranger-Mozer expansion

r r
X=— orx=—, (3
D )\D

: (4)

is implicitly a series in the correlation parameter introduced a V8w 4 \Y3 (87 \1B3y2
beneath and, therefore, the range of its validity is bounded on A = ™ = 1—5y3 andI’ = aL(?> = (E) 3
the weakly coupled regime. b

The sketch of this communication is outlined as follows. 5)

In the following section, dimensionless parameters and val- From Eq. (5) one can conclude that the inequalify
ues, suitable for the problem of the microfield d|str|but|on,$l_5 (e, A=1.128 orI'<0.75] stands for weakly or

are introduced. Section Il describes the basic formalism, ., moderately coupled regimes which are of particular in-
needed for all further consideration. Main results and discus: :
) . L t(tarest herein.
sions are stated in Sec. IV to demonstrate the significance o
handling higher order terms in the Baranger-Mozer series.
Section V concludes this paper by main inferences and pro- ll. BASIC FORMALISM
visions for future work as well.
In the most general case of physical interest the microfield
Il. DIMENSIONLESS PARAMETERS AND MAGNITUDES distribution W(E) is written via the probability density
Of interest hereinafter is the high-frequency component oPn+1(ro,r1,...,Fny) of finding a certain configuration

the microfield distribution and, as is aforesaid, this meansg,rq, ... ,ry of N+1 particles as
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W(E) f J E- E E PN+l(r01r11 er)
Due to its isotropy the functioR(k) depends on the mod-
Xdrgdrq---dry, (6) ule of the vectoik only. Introducing the dimensionless vec-

tor u=kE, and truncating serig®) at the third term produce
whereE; is the electric field exerted by thth particle at the
site of the radiator located ag,. o2 I
~ For a neutral particle at the observation poigtthere F(u):exp{nhl(u)+—hz(u)+—h3(u) (12)
is no correlation between the radiator and other plasma 2! 3!
particles and, thus, using the obvious relation
Prea(Fosl 1, - Fn) =P1(rg)Pp(ry, ... ,ry) with the single  with the Holtsmark contributiofil]
particle distribution functiorP4(r o), Eq.(6), after placing the

origin of the coordinates at the radiator site, simplifies to 3
nhy(u) = —u®?, (13

WE) :J J 5<E —EN: Ei) the Baranger and Mozer contributi¢,3]

XPN(I‘l,...,rN)dl’l'“dl’N, (7)

n2
5h2(u)_ ff‘Plﬁngz(lexz)dxldXZy (14

21(4 mA)?
where the Coulombic form of the electric field strength

and the triplet correlation contribution

e
Ei= il (8 i
_ _ ' _ Ehg’u ZWJJJWPZ%
is conventionally conceded to evaluate the high-frequency : I(4mA)
component of the electric microfield in classical plasmas. X Ga(X1, Xz, X3)dX, dX, X3, (15)

It turns out convenient to operate with the Fourier trans-
form F(k) of W(E) and, as was shown by Baranger andWth
Mozer [2], an expansion in the correlation functions
gp(r1,....rp) yields the following exponential series for

F(k) u-X
0= exr(iyz?l) -1. (16)
]
“ P
F(k)=exp >, n—hp(k)} , 9 Equation(12) is valid for a weakly coupled plasma and a
p=1 P! number of terms to be taken into account in se(@®gyrows

when the correlation parameter increases. Following the
same idea, the functiorg,(r4, ... ,rp) can also be expanded
with respect to the nonideality paramet&érand a resulting
series can then be truncated at the desirable order and, of
course, such a method for evaluating correlation functions is
hy(k) :f f @1 @pGp(ry, ... Fp)dry---dry (10)  quite consistent with Eq12). To do all that just mentioned
we use the cluster expansion for the pair correlation function
with the definition at orderA? [34-39,

where hp(k) is expressed through the correlation function
Op(ry, ....rp) of p particles as

A? A? .
O2(X1,X2) = = Ay A (X1,X0) + A%p p2(Xg,Xp) = = AD(Xy,) + Eq’(xlz)z - ;[In 3 exXf— X10) + exp(— X1 Ei(= %)
! 12
2

— explXo) Ei(= 3xq0) ] + %[In 3(1 +x1p)exp(— X10) — g{exﬁ‘ X12) = €XP(— 2X10)} + (1 + X )exp(— X)) Ei(= Xq0)
12

= (1 —Xxpp)exp(X)Ei(- 3x12)} (17)
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- y-0.2 0.4

0.3 ! N N y0.8 FIG. 1. The high-frequency microfield distri-
8 r’ \ [ 03 /f AR bution in Baranger and Mozer seri€d) termi-
R N/ NN =02t [ N nated at the third term. Dashed line, Holtsmark

- N ,’ AN [1]; black squares, HoopeH]; solid line, the

) S 01 g NE third term truncation of the Baranger and Mozer

series(present resuljs
1 2 3 ] 5 1 2 3 4 5
8 8

together with the convolution approximation for the triplet IV. RESULTS AND DISCUSSIONS

correlation function at the same ord@9,4q Numerical calculations have been made for the high fre-

) 5 quency microfield distribution equatiorié2) and (20). Se-
3(X1,X2,X3) = AP (X12) P(X13) + AP (X12)P(X23) ries expansions in spherical harmonics converge very rapidly
+ A2D(X;2) D (Xp9) and were all terminated dt&2. As was first noted in Ref.
It [41(:]i there is a nurgerical error infthe calculﬁltionr? of Baranger
_ A and Mozer[2] and we can confirm now that the computa-
A f PO POIPaIAxs. (18 0 i Ref.[41] are quite accurate. It is therefore sensible to
make a comparison of the present results with the data avail-
Here we introduced the notatioxqj:|xi—xj|, the Debye- able, for example, in Ref4]. To do so Fig. 1 is plotted for
Huckel function®(x;;) =exp(—x;;)/x;; and the exponential in-  two values of the correlation parametgr From this figure

tegral of the form one can infer that the deviation of Hooper’s results from
those in the Baranger and Mozer formalism is indeed very
_ * exp(-1) small relative to their shift from the Holtsmark distribution
Ei(=x) = —f " dt. (19)  as both use cluster-type expansions although determined in
X

different functions but quite consistent in spirit.

Simplifying the expressiond 7) and(18) go absolutely in ‘One can see th_at there is a maximum in th(_a curve of Fhe
line with the truncation of serie€9) since the entire tech- microfield distribution of Holtsmark. The numerical analysis
nique developed is aimed at the weakly coupled regimémplemented herein makes it clear that taking into account
where the Debye type theoi§l7) and the convolution ap- higher order correlation effects will not alter the qualitative
proximation (18) should certainly be valid and the first ne- PiCture as a whole and, thus, there must be a maximum in the
glected termg,(X;,X2,X3,X4) is of the higher orden?®. curve of the microfield distribution in the most general situ-

Even employing Egs(17) and (18) does not make the ation. Figure 1 and results of many other authors as well
integrals in Eqs(14) and(15) able to be evaluated and fur- [4-17,21-2%definitely show that it is the case. At the same
ther simplification is achieved by expanding integrands inlime One can observe that correlation effects shift the maxi-

the spherical harmonic¥, (6, ). The details and subtleties Mum of the distribution to weaker fields relative to the
of this routine procedure are transferred to the Appendi oltsmark distribution which is also clear because those cor-

where it is shown how to handle new contributions beyonorelation effects in the electron-electron repulsive interaction
Baranger and Moz€i2] make the probability density respect larger distances between

Taking into account the isotropy of the microfield distri- the particles and, consequently, weaker fields. The generality

bution its original form is then restored from the reversed®f Such an argument demonstrates unambiguously that the
Fourier transformation as correlation phenomena should always shift the microfield

distribution to weaker fields in comparison with the Holts-
28 (* mark theory.
H(B) = 47B°W(B) = —f usin(Bu)F(u)du. (20 In Fig. 2 the detailed comparison is made of the second
™ Jo and third term truncation of the Baranger and Mozer series.

H(B)

FIG. 2. The high-frequency microfield distribution in Baranger and Mozer s@)derminated at the third term. Dashed line, the second
term truncation of the Baranger and Mozer se(i@s dotted line, Holtsmark1]; solid line, the third term truncation of the Baranger and
Mozer seriegpresent resuljs
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FIG. 3. The entire picture of the high-
frequency microfield distributionH(B,y) in
Baranger and Mozer seri€9) terminated at the
third term.

Yy

For this particular domain it is seen that the discrepancy isnent of the electric field strength, which is important from
not very large and the difference between the approaches the viewpoint of the energy preserved in the microfield, di-
pure quantitative but it becomes more noticeable for largeverge for a neutral particle point. Quantum mechanical sta-
values of the correlation parameter. As also evidenced btistics will not seem to facilitate this situation since, as was
computer simulations one can envisage that higher order coshown in Ref[42], that divergence is caused by the unphysi-
relations lead to a shift of the maximum in the distribution to cal assumption on the pointlike electric charges.
weaker fields, which grows while the correlation parameter There are several ways to extend the technique used
increases. herein to larger values of the coupling parameter and to ex-
To observe the entire picture of the high-frequency mi-pand it to other situations of physical interest. First of all, to
crofield distribution for a range of the correlation parameteravoid the resummation like in E@l7) it is desirable to get
y=0-1.4 Fig. 3 is shown. It includes the 3D graph of thethe hypernetted chain approximation involved into the ap-
distribution against both the electric field strengttand the  proach. The other interesting objective is to consider the low-
correlation parameteyr, and the corresponding contour plot, frequency component of the microfield distribution and to
showing in they-8 plane the curves of the same height in theembody quantum mechanical effects via the pseudopotential
3D surface, to identify the location of the maximum. The model developed, for instance, in Ref&8-2Q.
more versatile behavior of the microfield distribution is ob-
served in case of the third term truncation of the Baranger
and Mozer series with the shift of the maximum to weaker ACKNOWLEDGMENTS

field strengths.
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This work has considered the third term truncatidoe to
the triplet correlationsof the Baranger and Mozer series for
the high-frequency microfield distribution at a neutral par-
ticle point. It has been shown that such an approach agrees
well with the results of Hooper as both use cluster-type ex- APPENDIX
pansions to treat the problem in hand. For large enough val-
ues of the correlation parameter it has been found possible tdl. Second term truncation of the Baranger and Mozer series
observe larger deviations of the third term truncation from All the f . L 44 and (1
the second one with the shift to smaller values of the electric the functions appearing in integrald4) and(15) are
field strength expanded in spherical harmonics as follows:

To be strict the method described above is only valid for

the weak coupling regime but fails to predict correct values * YU

for the strongly coupled plasmas where computer simula- ¢ = > il4m(2l + 1)]1’2[J|(—2> - é]o}Ym(ﬁj,wj),
tions (Monte Carlo and molecular dynamjcshould cer- 1=0 X

tainly work well. On the other hand, it is absolutely deprived (A1)

of any essential physical assumption and is, thus, as funda-
mental as computer simulations based on first principles.
Consequently, the developed technique together with the Goa (X, X)) = P(x;)
computer simulation methods, for which the limit to the ' .
weak coupling regime is difficult to trace down, lays the firm _ 2 21+1
foundation for studying the microfield distribution picture in B S| 4r
a wide range of plasma parameters.

It should also be noted here that in all the cases consid- => fI(Xi1Xj)YTm(0ivwi)Ylm(6jiwj)v (A2)
ered above the asymptotics @t makes the second mo- Im

1/2
] f1(x, %) Yio( 6, w;j)
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+1

1/2
:| r,(Xi,X]-)Ym(Hi]—,wij) rl(xivxj) = wa dlu' Pl(M)QZ,AZ(Xi!Xj)i M= COS{Xi ' Xj)!

- [2I+l
-1

G2 a2(Xj,X)) = % Ar

=2 116, %) Yim(6,0)Yim(8, @), (A3) (AS)
. with the Legendre polynomidp,.
The functionsf(x;,x;) andr(x;,x;) may neatly be derived
in an analytical form and fok=0, 1, 2 are concisely written
where & refers to the Kronecker delta), designates the 35 follows:
Bessel spherical function and the expressions ffog, ;)

oy i 2
andr(x,x;) are written as fo(xi %) = i[exp(_ %~ X)) — exp-x ~x)], (A6)
i

+1 2
du Pi(n)®(x;), p=codx; X)), f1(,%) = Xg_:z[(xixj =[x = x| = Dexp(- [ — )
1 i
(A4) + (XX + X + X+ Dexp(— X — x))], (A7)

f|(Xi,XJ') = 27Tf

2 3x-x)? 9Yx-x| 9 3(x +x)?
f2(Xian):2_772|:<Xin_3_aXi_Xj|+ ( . ]) + | I J|+_>exq_|xi_Xj|)_<xixj+3+3(Xi+Xj)+(l—J)_
X Xj Xin Xin XiX]' Xin
9(x; + X; 9
+—J—( LX) +—)eXp(—Xi‘Xj)] (A8)
Xin Xin

rox.) = 75 L2 expt= 2 = x]) = 2 exi(= 20 +)) = expl= b = )(4 + 31n 32~ =)
i

+exp(= (% + %)) (4 + 3 In J2 - (x +x)]) = 3 expl= % = X DEi(= [% = x;)(2 =[x = xi|) + 3 exp(= (% + X))
XEi(= (% +X))(2 = (% + X)) = 3 expl|x; = ;) Ei(= 3x; = x)(2 + % = Xj[) + 3 explx; + X)) Ei(= 3(x; + X))
X2+ +x)], (A9)

ro(X;, %)) = %[2 exp(— 2(x; + X)) (L + 2(x; + X)) +xx}) = 2 exf— 2|x; = x| )(1 + 2% = x| = %))
i %]
= exp(= (% + X)) (A[L +(x + X)) + 3] = 31n 3+ + 3506 +))]) + exp(= [ =) (4L + [ = x5] = %]
=31In 3+ X = xxj% = X;[1) + 3 exp(= (x; + X)) Ei(= (x; + %)) O + X+ X (% + X))
= 3 exp— |x =X Ei(= |x = XD OF + X = xix; % = Xi]) + 3 explx; + X)) Ei(= 30 + X)) O + X = X% + X))

= 3 explx = X)Ei(= 3]x = X0 + X+ xxil% = x;)1, (A10)

ro(%:, %)) = %?Xf[los:a(_ 2(% + X)) = Ei(= 2% = x;)] + 2 exp= 2|x = X;)(6(3 =xx)|x = ;| + (¢ + 3)(x] + 3) = 9xix;)
= 2 exp(— 20 + %)) (6(3 +%%) (% + X)) + (¢ + (X + 3) + X)) = expl(= |x = %) (12(3 = xx))[x; = ]
+4(x¢ +3) (X + 3) = 36xx; = 3 In 3 + 3(x; = X))+ 18]1x; = X;| + A% = 3w (0 +x7) + 9(x; = X)) + 18))
+expl= (% + %)) (12(3 +X) (x; + X)) + 40¢ + 3) (X + 3) + 36xx; = 3 In 3([XX] + 3(x; + X))+ 18](x; + X)) + 4xX
+ 33X O + X7) + 9(x; + )2 + 18)) + 3 expl— % = X Ei(= [x; = x; N ([xX + 3(x; = x)? + 18]|x; = x| + 4x*X°
= 3x% 04 + X7) +9(x = X))? + 18) = 3 expl— (X + X)) Ei(= (x; + X)) (X + 3(x; + ;)% + 18](x; + X)) + 4

+ 33X 0 + X7) + 90 + ;)2 + 18) + 3 expt]x; — X Ei(= 3x; = x;) (= [xX + 3(x; = x)? + 18]|x; = ;| + 4xX
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= 3x% ¢ + X5) + 9(x; = X))? + 18) = 3 explx; + X)) Ei(= 3(%; + X)) (= XX + 3(x; + %)% + 18](x; + X)) + 4%
+3x% ¢ + X7) +9(x + )2 + 18)], (A11)

where E{-x) is the exponential integral functiaid9).
Using these expressions together with the orthogonality of spherical harmonics

27
j f dédw sin 6’Y| ™y (6,w)Y) mz(ﬁ w) = d m1m2 (A12)

the second term truncation of Baranger-Mozer contribugioh takes the form

2 % (o 2 2 3
i) == 3,2y32< 1)'(20+1) jo fo dxldxzxixé{m(yx—;)—ao][m(%)—fs.oMfmxl,xz)—{—5(8w>1’2rl<x1,x2) .

1=0 2
(A13)

2. Third term truncation of the Baranger and Mozer series

Substituting Eq(18) into Eg.(15) and using expansions Eq#1) and(A2) one finds that the first three terms in E§8)
give rise to the following contribution:

3
%hé(u) 32\2ﬂ2)ﬁ|12_0|22_0|32 §|1|23J f f dxldxzdx3xix§x§{.],l<yf) A MJ|2<yX:) 5|20]

y°u
{‘]'3< x2 ) ‘330] fi, (X1, %) 1 (X1,%3), (A14)
where it is introduced
T (2T
§|1|2|3 = i|1+|2+|3(2|1 + 1)1/2(2'2 + 1)1/2(2'3 + 1)1/2] f d0 da) Sin 0 Y|10(0, w)Y|20(0, w)Y|30(0, (,l)) . (A15)
o Jo

The integration over the product of three spherical harmonics is very well known in qguantum mechanics and expressed
through the so-calledjssymbol of Wigner as follows:

(21 + 1)(2l,+ 1) (25 + 1)(|1 I, |3>
=(-1)P — A16
= (=1) Vi 00 0 (A16)
where the 3symbol of Wigner in this particular case takes the following form:
(_ 1)p[<|1+|2—|3>!(|1—|2+|3>!<—|1+|2+|3>!T’ZX p! |
('1 P |3)_ (2p+1)! (p=1)Mp=1)H(p—13)! (AL7)
0 0 0/ |ifjly=l]<Ilz<Il;+l,andif 2p=I,+I,+I3is even,

0, in all other cases.

Similar procedure for the convolution term on the right-hand side of(E8).for the triplet correlation function produces the
following outcome:

2 2
yu y'u yu
- dx, dx, d 4 Il =4 Jl—=]-4
128\277y |1—o|§oI§ gllzlf f f e X3X1X2X3|: ( ) |10][ IZ( Xg) |20M |3< x§> |30}

Xf dX4X421f|1(X1,X4)f|2(X2,X4)f|3(X3,X4)- (A18)
0

3
n " —_
ghs(u) =

The final expression for the three perturber contribution is ultimately found as a sum AEY.and Eq.(A18),
n3 3 3

3w = %hg(u) + %hg(u). (A19)

One should notice here that Eq#14) and (A18) contain three and four dimensional integrals that are hard to evaluate
numerically but it is symmetry in the coe1°ficier1§fsl,2|3 that allows one to reduce those integrations to two dimensions.

046404-7



A. DAVLETOV AND M.-M. GOMBERT

[1] J. Holtsmark, Ann. PhyqLeipzig) 58, 577(1919.

[2] M. Baranger and B. Mozer, Phys. Reld5 521 (1959.

[3] B. Mozer and M. Baranger, Phys. Rell8 626 (1960.

[4] C. F. Hooper, Jr., Phys. Ret49, 77 (1966.

[5] R. J. Tighe and C. F. Hooper, Jr., Phys. Rev.14, 1514
(1976.

[6] R. J. Tighe and C. F. Hooper, Jr., Phys. Rev.1&, 1773
(1977).

[7] C. A. Iglesias and C. F. Hooper, Jr., Phys. Rev.2B, 1049
(1982.

[8] J. E. Mayer and M. G. MayeiStatistical MechanicgWiley,
New York, 1940.

[9] C. A. Iglesias, J. L. Lebowitz, and D. MacGowan, Phys. Rev.

A 28, 1667(1983.
[10] C. A. Iglesias and J. L. Lebowitz, Phys. Rev. 30, 2001
(1984

[11] C. A. Iglesias, H. E. DeWitt, J. L. Lebowitz, D. MacGowan,

and W. B. Hubbard, Phys. Rev. 81, 1698(1985.

[12] C. A. Iglesias, Phys. Rev. 27, 2705(1983.

[13] F. Lado, Phys. Rev. A34, 4131(1986.

[14] F. Lado, Phys. Rev. A36, 313(1987.

[15] B. Held, C. Deutsch, and M.-M. Gombert, J. Phys1A 3845
(1982.

[16] B. Held, C. Deutsch, and M.-M. Gombert, Phys. Rev.2A,
585(1982.

[17] B. Held, M.-M. Gombert, and C. Deutsch, Phys. Rev.3A,
921 (1985.

[18] H. Minoo, M.-M. Gombert, and C. Deutsch, Phys. Rev28,
924 (1981).

[19] M.-M. Gombert, Phys. Rev. 66, 066407(2002.

[20] A. V. Filinov, M. Bonitz, and W. Ebeling, J. Phys. 86, 5957
(2003.

[21] D. B. Boercker and J. W. Dufty, iSpectral Line Shapegd-
ited by K. Burnett(de Gruyter, Berlin, 1983 Vol. 2.

[22] C. A. Iglesias and C. F. Hooper, Jr., Phys. Rev.2B, 1632

PHYSICAL REVIEW E 70, 046404(2004)

(1982.

[23] X.-Z. Yan and S. Ichimaru, Phys. Rev. 84, 2167(1986.

[24] M. W. C. Dharma-Wardana and F. Perrot, Phys. Rev33
3303(1986.

[25] F. Perrot and M. W. C. Dharma-Wardana, Physicd 34, 231
(1985.

[26] J. W. Dufty, inStrongly Coupled Plasma Physjedited by F.

J. Rogers and H. E. DeWitPlenum, New York, 198y

[27] D. B. Boercker, C. A. Iglesias, and J. W. Dufty, Phys. Rev. A
36, 2254(1987).

[28] A. Alastuey, J. L. Lebowitz, and D. Levesque, Phys. Rev. A
43, 2673(1991).

[29] D. P. Kilcrease, R. C. Mancini, and C. F. Hooper, Jr., Phys.
Rev. E 48, 3901(1993.

[30] M. S. Murillo, D. P. Kilcrease, and L. A. Collins, Phys. Rev. E
55, 6289(1997).

[31] D. P. Kilcrease and M. S. Murillo, J. Quant. Spectrosc. Radiat.
Transf. 65, 343(2000.

[32] A. V. Demura, D. Gilles, and C. Stehlé, J. Quant. Spectrosc.
Radiat. Transf.54, 123(1995.

[33] C. Stehlé, D. Gilles, and A. V. Demura, Eur. Phys. J.1R,
355(2000.

[34] J. E. Mayer, J. Chem. Phy48, 1426(1950.

[35] E. E. Salpeter, Ann. PhysN.Y.) 5, 183(1958.

[36] D. L. Bowers and E. E. Salpeter, Phys. R&9, 1180(1960.

[37] H. E. DeWitt, Phys. Rev140, A466 (1965.

[38] C. Deutsch, Y. Furutani, and M.-M. Gombert, Phys. Rép,

85 (1981).

[39] M.-M. Gombert and Tu Khiet, irSixth International Workshop
on Nonideal Plasmgedited by W. Ebeling, A. Forster, and R.
Radtke(Teubner, Stuggart, 1992

[40] H. Totsuji, Phys. Rev. A29, 314 (1984).

[41] H. Pfennig and E. Treffitz, Z. Naturforsch. &1, 697 (1966.

[42] F. Engelmann, Z. Physl69, 126 (1962.

046404-8



