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We report on nontrivial calculations of a triplet correlation contribution to the high-frequency component of
the microfield distribution at a neutral particle point by utilizing an expansion, initially proposed by Baranger
and Mozer, and demonstrate that its contribution leads to a shift of the maximum in the distribution to weaker
fields relative to results including the pair correlation only. The entire picture of the high-frequency microfield
distribution is studied and detailed comparison with the results of Hooper is made.
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I. INTRODUCTION

In real plasmas various elementary processes, such as, for
instance, an excitation of electrons in atoms and ions of the
matter, permanently occur. The excited atoms and ions then
get rid of the surplus energy by radiating electromagnetic
waves(photons). It is natural that all processes, being in a
plasma, may, at a different extent, influence its characteris-
tics. On the other hand, all the phenomena, taking place in
the plasma medium, are affected by its electric microfield,
i.e., the electric field produced by all charges in the plasma,
which, thus, is of great importance in the theory and appli-
cations. In particular, when applied to the process of the
radiation of excited atoms and ions, the electric microfield is
known to be responsible for the so-called Stark broadening
of spectral lines.

The problem of determining electric microfield distribu-
tions is conventionally divided into two parts due to the ex-
istence of two different time scales in plasmas. On the time
scale comparable to the electron relaxation time the plasma
medium may be considered a gas of electrons immersed in a
positively charged neutralizing background of ions and, thus,
the Coulomb forces act at the observation point to generate
the microfield distribution which is then called the high-
frequency component since the electron relaxation time is
dramatically less in magnitude than the ion one. The low-
frequency component of the microfield, appearing on the ion
relaxation time scale, is then introduced by the notion that it
is governed by the dynamics of ions, surrounded by electron
clouds, and, consequently, the shielded Coulomb forces at
the observation point should thoroughly be considered. Since
the theory of the microfield distribution is chiefly supposed
to be applicable to the problem of spectral line broadening an
important question is what is it at the observation point. A
particle at the observation point is called a radiator and if it is
an ion, its correlation with the surrounding plasma medium
should necessarily be taken into account, whereas if it is an

atom, no correlation ties it to neighboring plasma particles.
Since the work of Holtsmark[1], who completely ne-

glected correlations between particles, most of all efforts
have been concentrated on a theory of the microfield distri-
bution with inclusion of collective events in plasmas. The
first remarkable advance in this direction was made by
Baranger and Mozer[2,3], who wrote the distributions of
both high- and low-frequency components of the microfield
distribution as expansions with respect to the correlation
functions which then had been terminated at the pair corre-
lation. To do that they applied the Debye-Hückel form of the
pair correlation function that corresponds to the first order of
the expansion in a nonideality parameter. It was argued how-
ever that such an approach is only valid for low-density,
high-temperature plasmas where a deviation from the Holts-
mark original distribution, corresponding to the first term in
the series, is not large. Afterwards Hooper and Tighe[4–6]
reformulated this expansion in terms of other functions by
introducing a free parameter which had been chosen on the
basis of an argument of arriving at a plateau where there was
no dependence on the free parameter itself. To improve these
results Iglesias and Hooper[7] included in the analysis the
Debye-chain cluster expansion similar to that of Ursell and
Mayer [8]. Quite an analogous approach, now known as
APEX, was proposed by Iglesias, Lebowitzet al. [9–11] but
the free parameter, called adjustable, had been picked out to
satisfy the exactly known second moment rule for the elec-
tric field strength. In the early 1980s, following the idea of
Morita on the similarity of the representation of the mi-
crofield distribution to that of the excess chemical potential,
Iglesias[12] virtually reduced the problem to determination
of the radial distribution function for a fictious system with
an imaginary part of the interaction potential energy. Em-
ploying this idea allowed Lado[13,14] to develop an integral
equation technique for calculating the radial distribution
function and good agreement was discovered with computer
simulations.

Another point of interest is an inclusion of quantum me-
chanical effects. It was done by Held and co-workers
[15–17] at high temperatures when the Landau length is*Electronic address: marie-madeleine.gombert@pgp.u-psud.fr
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smaller than the thermal de Broglie wavelength of electrons.
In this particular low-density case it becomes possible to
utilize a semiclassical approach with a properly defined pair-
wise pseudopotential model[18–20]. The pseudopotentials
and the corresponding correlation functions were then used
in the framework of the Baranger-Mozer expansion to find
both a very rich picture for the microfield distribution behav-
ior, depending on plasma parameters chosen, and agreement
with another approach as well[21]. One of the other possible
approaches to the problem is the density-response formalism
of quantum liquids. The first attempt in this direction was
undertaken by Iglesias and Hooper[22], who assumed the
response function to acquire a form of the random phase
approximation. Later Ichimaru and Yan[23] extended this
approach to strongly coupled plasmas by introducing a local
field correction. Another very sophisticated method was put
forward by Perrot and Dharma-Wardana[24]. It is based on
the density functional theory with partial resummation of
higher-order terms in the Baranger-Mozer series[25] and
takes into consideration such factors as an internal structure
of the test particle and strong coupling. More detailed analy-
sis of these and other aspects of the microfield distribution
problem may be found in the exhaustive review[26].

When the motion of perturbing ions and the radiator can-
not be ignored any longer during the radiation process of the
test particle an appropriate consideration of dynamical ef-
fects turns essential[27,28]. On the other hand effects of
strong coupling can establish nonuniformity of the electric
microfield distribution caused by multipole moments of the
plasma system[29–33]. That is why, at present, there is a
trend to incorporate dynamical effects and strong coupling
phenomena as well which can give rise to the nonuniformity
of the electric microfield distribution and, as a result, to the
asymmetry of spectral line shapes.

It is worthwhile emphasizing that until now most of all
works accumulated the pair correlation approach when two
perturbers create the microfield distribution at the observa-
tion point and are correlated with each other and with the
radiator due to the reciprocal interaction of plasma particles.
In contrast, we report on direct calculations in which a third
perturber is involved. For this purpose we choose the tech-
nique, proposed by Baranger and Mozer, because it is essen-
tially free of any crucial physical assumption and, thus, it is
mostly as primary as computer simulations. The only restric-
tion comes from the fact that the Baranger-Mozer expansion
is implicitly a series in the correlation parameter introduced
beneath and, therefore, the range of its validity is bounded on
the weakly coupled regime.

The sketch of this communication is outlined as follows.
In the following section, dimensionless parameters and val-
ues, suitable for the problem of the microfield distribution,
are introduced. Section III describes the basic formalism
needed for all further consideration. Main results and discus-
sions are stated in Sec. IV to demonstrate the significance of
handling higher order terms in the Baranger-Mozer series.
Section V concludes this paper by main inferences and pro-
visions for future work as well.

II. DIMENSIONLESS PARAMETERS AND MAGNITUDES

Of interest hereinafter is the high-frequency component of
the microfield distribution and, as is aforesaid, this means

that the system under consideration is the one-component,
electron plasma, i.e., a gas of electrons moving in a uniform
neutralizing background of positively charged ions.

The first value relevant to the problem of the microfield
distribution is the distancea0 very close, in sense of magni-
tude, to the mean interelectron spacing and it is defined as

4
15s2pd3/2na0

3 = 1, s1d

where n denotes the equilibrium electron number density.
Using Eq.(1) the electric field strength is suitably normal-
ized through

b =
E

E0
. s2d

HereE0=e/a0
2 ande refers to the magnitude of the elemen-

tary electric charge.
Despite the definition in Eq.(1) all distances and vectors

in what follows are made dimensionless by using the Debye
electron lengthlD=skBT/4pne2d1/2 as

x =
r

lD
or x =

r

lD
, s3d

wherekB designates the Boltzmann constant andT signifies
the electron temperature.

To measure importance of interparticle correlations in
plasmas the correlation parametery is merely introduced via
the ratio of the parametera0 and the Debye electron length
lD,

y =
a0

lD
, s4d

and it is easily related to the standard nonideality plasma
parameter, defined through the ratio of the Landau length
aL=e2/kBT and the Debye screening radiuslD or to the more
usual Coulomb coupling parameterG=aLs4pn/3d1/3 as

L =
aL

lD
=

Î8p

15
y3 andG = aLS4pn

3
D1/3

= S8p

25
D1/3y2

3
.

s5d

From Eq. (5) one can conclude that the inequalityy
ø1.5 (i.e., Lø1.128 or Gø0.751) stands for weakly or
even moderately coupled regimes which are of particular in-
terest herein.

III. BASIC FORMALISM

In the most general case of physical interest the microfield
distribution WsEd is written via the probability density
PN+1sr 0,r 1, . . . ,r Nd of finding a certain configuration
r 0,r 1, . . . ,r N of N+1 particles as
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WsEd =E ¯E dSE − o
i=1

N

EiDPN+1sr 0,r 1, ¯ ,r Nd

3dr 0 dr 1 ¯ dr N, s6d

whereEi is the electric field exerted by theith particle at the
site of the radiator located atr 0.

For a neutral particle at the observation pointr 0 there
is no correlation between the radiator and other plasma
particles and, thus, using the obvious relation
PN+1sr 0,r 1, . . . ,r Nd=P1sr 0dPNsr 1, . . . ,r Nd with the single
particle distribution functionP1sr 0d, Eq.(6), after placing the
origin of the coordinates at the radiator site, simplifies to

WsEd =E ¯E dSE − o
i=1

N

EiD
3PNsr 1, . . . ,r Nddr 1 ¯ dr N, s7d

where the Coulombic form of the electric field strength

Ei =
e

ri
3r i s8d

is conventionally conceded to evaluate the high-frequency
component of the electric microfield in classical plasmas.

It turns out convenient to operate with the Fourier trans-
form Fskd of WsEd and, as was shown by Baranger and
Mozer [2], an expansion in the correlation functions
gpsr 1, . . . ,r pd yields the following exponential series for
Fskd:

Fskd = expFo
p=1

`
np

p!
hpskdG , s9d

where hpskd is expressed through the correlation function
gpsr 1, . . . ,r pd of p particles as

hpskd =E ¯E w1 . . . wpgpsr 1, . . . ,r pddr 1 ¯ dr p s10d

with the definition

w j = expsik ·Ejd − 1. s11d

Due to its isotropy the functionFskd depends on the mod-
ule of the vectork only. Introducing the dimensionless vec-
tor u=kE0 and truncating series(9) at the third term produce

Fsud = expFnh1sud +
n2

2!
h2sud +

n3

3!
h3sudG s12d

with the Holtsmark contribution[1]

nh1sud = − u3/2, s13d

the Baranger and Mozer contribution[2,3]

n2

2!
h2sud =

1

2!s4pLd2 E E w1w2g2sx1,x2ddx1 dx2, s14d

and the triplet correlation contribution

n3

3!
h3sud =

1

3!s4pLd3 E E E w1w2w3

3g3sx1,x2,x3ddx1 dx2 dx3, s15d

with

w j = expSiy2u ·xj

xj
3 D − 1. s16d

Equation(12) is valid for a weakly coupled plasma and a
number of terms to be taken into account in series(9) grows
when the correlation parameter increases. Following the
same idea, the functionsgpsr 1, . . . ,r pd can also be expanded
with respect to the nonideality parameterL and a resulting
series can then be truncated at the desirable order and, of
course, such a method for evaluating correlation functions is
quite consistent with Eq.(12). To do all that just mentioned
we use the cluster expansion for the pair correlation function
at orderL2 [34–38],

g2sx1,x2d = − Lg2,Lsx1,x2d + L2g2,L2sx1,x2d = − LFsx12d +
L2

2!
Fsx12d2 −

L2

2x12
fln 3 exps− x12d + exps− x12dEis− x12d

− expsx12dEis− 3x12dg +
L2

8x12
Fln 3s1 + x12dexps− x12d −

4

3
hexps− x12d − exps− 2x12dj + s1 + x12dexps− x12dEis− x12d

− s1 − x12dexpsx12dEis− 3x12dG s17d
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together with the convolution approximation for the triplet
correlation function at the same order[39,40]

g3sx1,x2,x3d = L2Fsx12dFsx13d + L2Fsx12dFsx23d

+ L2Fsx13dFsx23d

−
L2

4p
E Fsx14dFsx24dFsx34ddx4. s18d

Here we introduced the notationxij = uxi −xj u, the Debye-
Hückel functionFsxijd=exps−xijd /xij and the exponential in-
tegral of the form

Eis− xd = −E
x

` exps− td
t

dt. s19d

Simplifying the expressions(17) and(18) go absolutely in
line with the truncation of series(9) since the entire tech-
nique developed is aimed at the weakly coupled regime
where the Debye type theory(17) and the convolution ap-
proximation (18) should certainly be valid and the first ne-
glected termg4sx1,x2,x3,x4d is of the higher orderL3.

Even employing Eqs.(17) and (18) does not make the
integrals in Eqs.(14) and (15) able to be evaluated and fur-
ther simplification is achieved by expanding integrands in
the spherical harmonicsYlmsu ,vd. The details and subtleties
of this routine procedure are transferred to the Appendix
where it is shown how to handle new contributions beyond
Baranger and Mozer[2].

Taking into account the isotropy of the microfield distri-
bution its original form is then restored from the reversed
Fourier transformation as

Hsbd = 4pb2Wsbd =
2b

p
E

0

`

u sinsbudFsuddu. s20d

IV. RESULTS AND DISCUSSIONS

Numerical calculations have been made for the high fre-
quency microfield distribution equations(12) and (20). Se-
ries expansions in spherical harmonics converge very rapidly
and were all terminated atl =2. As was first noted in Ref.
[41] there is a numerical error in the calculations of Baranger
and Mozer[2] and we can confirm now that the computa-
tions in Ref.[41] are quite accurate. It is therefore sensible to
make a comparison of the present results with the data avail-
able, for example, in Ref.[4]. To do so Fig. 1 is plotted for
two values of the correlation parametery. From this figure
one can infer that the deviation of Hooper’s results from
those in the Baranger and Mozer formalism is indeed very
small relative to their shift from the Holtsmark distribution
as both use cluster-type expansions although determined in
different functions but quite consistent in spirit.

One can see that there is a maximum in the curve of the
microfield distribution of Holtsmark. The numerical analysis
implemented herein makes it clear that taking into account
higher order correlation effects will not alter the qualitative
picture as a whole and, thus, there must be a maximum in the
curve of the microfield distribution in the most general situ-
ation. Figure 1 and results of many other authors as well
[4–17,21–25] definitely show that it is the case. At the same
time one can observe that correlation effects shift the maxi-
mum of the distribution to weaker fields relative to the
Holtsmark distribution which is also clear because those cor-
relation effects in the electron-electron repulsive interaction
make the probability density respect larger distances between
the particles and, consequently, weaker fields. The generality
of such an argument demonstrates unambiguously that the
correlation phenomena should always shift the microfield
distribution to weaker fields in comparison with the Holts-
mark theory.

In Fig. 2 the detailed comparison is made of the second
and third term truncation of the Baranger and Mozer series.

FIG. 1. The high-frequency microfield distri-
bution in Baranger and Mozer series(9) termi-
nated at the third term. Dashed line, Holtsmark
[1]; black squares, Hooper[4]; solid line, the
third term truncation of the Baranger and Mozer
series(present results).

FIG. 2. The high-frequency microfield distribution in Baranger and Mozer series(9) terminated at the third term. Dashed line, the second
term truncation of the Baranger and Mozer series(9); dotted line, Holtsmark[1]; solid line, the third term truncation of the Baranger and
Mozer series(present results).
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For this particular domain it is seen that the discrepancy is
not very large and the difference between the approaches is
pure quantitative but it becomes more noticeable for larger
values of the correlation parameter. As also evidenced by
computer simulations one can envisage that higher order cor-
relations lead to a shift of the maximum in the distribution to
weaker fields, which grows while the correlation parameter
increases.

To observe the entire picture of the high-frequency mi-
crofield distribution for a range of the correlation parameter
y=0–1.4 Fig. 3 is shown. It includes the 3D graph of the
distribution against both the electric field strengthb and the
correlation parametery, and the corresponding contour plot,
showing in they-b plane the curves of the same height in the
3D surface, to identify the location of the maximum. The
more versatile behavior of the microfield distribution is ob-
served in case of the third term truncation of the Baranger
and Mozer series with the shift of the maximum to weaker
field strengths.

V. CONCLUSIONS

This work has considered the third term truncation(due to
the triplet correlations) of the Baranger and Mozer series for
the high-frequency microfield distribution at a neutral par-
ticle point. It has been shown that such an approach agrees
well with the results of Hooper as both use cluster-type ex-
pansions to treat the problem in hand. For large enough val-
ues of the correlation parameter it has been found possible to
observe larger deviations of the third term truncation from
the second one with the shift to smaller values of the electric
field strength.

To be strict the method described above is only valid for
the weak coupling regime but fails to predict correct values
for the strongly coupled plasmas where computer simula-
tions (Monte Carlo and molecular dynamics) should cer-
tainly work well. On the other hand, it is absolutely deprived
of any essential physical assumption and is, thus, as funda-
mental as computer simulations based on first principles.
Consequently, the developed technique together with the
computer simulation methods, for which the limit to the
weak coupling regime is difficult to trace down, lays the firm
foundation for studying the microfield distribution picture in
a wide range of plasma parameters.

It should also be noted here that in all the cases consid-
ered above the asymptotics atb→` makes the second mo-

ment of the electric field strength, which is important from
the viewpoint of the energy preserved in the microfield, di-
verge for a neutral particle point. Quantum mechanical sta-
tistics will not seem to facilitate this situation since, as was
shown in Ref.[42], that divergence is caused by the unphysi-
cal assumption on the pointlike electric charges.

There are several ways to extend the technique used
herein to larger values of the coupling parameter and to ex-
pand it to other situations of physical interest. First of all, to
avoid the resummation like in Eq.(17) it is desirable to get
the hypernetted chain approximation involved into the ap-
proach. The other interesting objective is to consider the low-
frequency component of the microfield distribution and to
embody quantum mechanical effects via the pseudopotential
model developed, for instance, in Refs.[18–20].
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APPENDIX

1. Second term truncation of the Baranger and Mozer series

All the functions appearing in integrals(14) and (15) are
expanded in spherical harmonics as follows:

w j = o
l=0

`

i lf4ps2l + 1dg1/2FJlSy2u

xj
2 D − dl0GYl0su j,v jd,

sA1d

g2,Lsxi,xjd = Fsxijd

= o
l=0

` F2l + 1

4p
G1/2

f lsxi,xjdYl0sui j ,vi jd

= o
l,m

flsxi,xjdYlm
* sui,vidYlmsu j,v jd, sA2d

FIG. 3. The entire picture of the high-
frequency microfield distributionHsb ,yd in
Baranger and Mozer series(9) terminated at the
third term.
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g2,L2sxi,xjd = o
l=0

` F2l + 1

4p
G1/2

r lsxi,xjdYl0sui j ,vi jd

= o
l,m

rlsxi,xjdYlm
* sui,v jdYlmsui,v jd, sA3d

where d refers to the Kronecker delta,Jl designates the
Bessel spherical function and the expressions forf lsxi ,xjd
and r lsxi ,xjd are written as

f lsxi,xjd = 2pE
−1

+1

dm PlsmdFsxijd, m = cossxi ·xjd,

sA4d

r lsxi,xjd = 2pE
−1

+1

dm Plsmdg2,L2sxi,xjd, m = cossxi ·xjd,

sA5d

with the Legendre polynomialPl.
The functionsf lsxi ,xjd andr lsxi ,xjd may neatly be derived

in an analytical form and forl =0, 1, 2 are concisely written
as follows:

f0sxi,xjd =
2p

xixj
fexps− uxi − xjud − exps− xi − xjdg, sA6d

f1sxi,xjd =
2p

xi
2xj

2fsxixj − uxi − xju − 1dexps− uxi − xjud

+ sxixj + xi + xj + 1dexps− xi − xjdg, sA7d

f2sxi,xjd =
2p

xi
2xj

2FSxixj − 3 − 3uxi − xju +
3sxi − xjd2

xixj
+

9uxi − xju
xixj

+
9

xixj
Dexps− uxi − xjud − Sxixj + 3 + 3sxi + xjd +

3sxi + xjd2

xixj

+
9sxi + xjd

xixj
+

9

xixj
Dexps− xi − xjdG , sA8d

r0sxi,xjd =
p

12xixj
†2 exps− 2uxi − xjud − 2 exp„− 2sxi + xjd… − exps− uxi − xjud„4 + 3 ln 3f2 − uxi − xjug…

+ exp„− sxi + xjd…„4 + 3 ln 3f2 − sxi + xjdg… − 3 exps− uxi − xjudEis− uxi − xjuds2 − uxi − xjud + 3 exp„− sxi + xjd…

3Ei„− sxi + xjd…„2 − sxi + xjd… − 3 expsuxi − xjudEis− 3uxi − xjuds2 + uxi − xjud + 3 expsxi + xjdEi„− 3sxi + xjd…

3„2 + sxi + xjd…‡, sA9d

r1sxi,xjd =
p

12xi
2xj

2†2 exp„− 2sxi + xjd…„1 + 2sxi + xjd + xixj… − 2 exps− 2uxi − xjuds1 + 2uxi − xju − xixjd

− exp„− sxi + xjd…„4f1 + sxi + xjd + xixjg − 3 ln 3fxi
2 + xj

2 + xixjsxi + xjdg… + exps− uxi − xjud„4f1 + uxi − xju − xixjg

− 3 ln 3fxi
2 + xj

2 − xixjuxi − xjug… + 3 exp„− sxi + xjd…Ei„− sxi + xjd…„xi
2 + xj

2 + xixjsxi + xjd…

− 3 exps− uxi − xjudEis− uxi − xjudsxi
2 + xj

2 − xixjuxi − xjud + 3 expsxi + xjdEi„− 3sxi + xjd…„xi
2 + xj

2 − xixjsxi + xjd…

− 3 expsuxi − xjudEis− 3uxi − xjudsxi
2 + xj

2 + xixjuxi − xjud‡, sA10d

r2sxi,xjd =
p

12xi
3xj

3†108fEi„− 2sxi + xjd… − Eis− 2uxi − xjudg + 2 exps− 2uxi − xjud„6s3 − xixjduxi − xju + sxi
2 + 3dsxj

2 + 3d − 9xixj…

− 2 exp„− 2sxi + xjd…„6s3 + xixjdsxi + xjd + sxi
2 + 3dsxj

2 + 3d + 9xixj… − exps− uxi − xjud„12s3 − xixjduxi − xju

+ 4sxi
2 + 3dsxj

2 + 3d − 36xixj − 3 ln 3„fxi
2xj

2 + 3sxi − xjd2 + 18guxi − xju + 4xi
2xj

2 − 3xixjsxi
2 + xj

2d + 9sxi − xjd2 + 18……

+ exp„− sxi + xjd…„12s3 + xixjdsxi + xjd + 4sxi
2 + 3dsxj

2 + 3d + 36xixj − 3 ln 3„fxi
2xj

2 + 3sxi + xjd2 + 18gsxi + xjd + 4xi
2xj

2

+ 3xixjsxi
2 + xj

2d + 9sxi + xjd2 + 18…… + 3 exps− uxi − xjudEis− uxi − xjud„fxi
2xj

2 + 3sxi − xjd2 + 18guxi − xju + 4xi
2xj

2

− 3xixjsxi
2 + xj

2d + 9sxi − xjd2 + 18… − 3 exp„− sxi + xjd…Ei„− sxi + xjd…„fxi
2xj

2 + 3sxi + xjd2 + 18gsxi + xjd + 4xi
2xj

2

+ 3xixjsxi
2 + xj

2d + 9sxi + xjd2 + 18… + 3 expsuxi − xjudEis− 3uxi − xjud„− fxi
2xj

2 + 3sxi − xjd2 + 18guxi − xju + 4xi
2xj

2
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− 3xixjsxi
2 + xj

2d + 9sxi − xjd2 + 18… − 3 expsxi + xjdEi„− 3sxi + xjd…„− fxi
2xj

2 + 3sxi + xjd2 + 18gsxi + xjd + 4xi
2xj

2

+ 3xixjsxi
2 + xj

2d + 9sxi + xjd2 + 18…‡, sA11d

where Eis−xd is the exponential integral function(19).
Using these expressions together with the orthogonality of spherical harmonics

E
0

p E
0

2p

du dv sinu Yl1m1

* su,vdYl2m2
su,vd = dl1l2

dm1m2
, sA12d

the second term truncation of Baranger-Mozer contribution(14) takes the form

n2

2!
h2sud = −

15

s8pd3/2y3o
l=0

`

s− 1dls2l + 1dE
0

` E
0

`

dx1 dx2 x1
2x2

2FJlSy2u

x1
2 D − dl0GFJlSy2u

x2
2 D − dl0GF f lsx1,x2d −

y3

15
s8pd1/2r lsx1,x2dG .

sA13d

2. Third term truncation of the Baranger and Mozer series

Substituting Eq.(18) into Eq. (15) and using expansions Eqs.(A1) and(A2) one finds that the first three terms in Eq.(18)
give rise to the following contribution:

n3

3!
h38sud =

15

32Î2p2y3 o
l1=0

`

o
l2=0

`

o
l3=0

`

jl1l2l3E
0

` E
0

` E
0

`

dx1 dx2 dx3 x1
2x2

2x3
2FJl1Sy2u

x1
2 D − dl10GFJl2Sy2u

x2
2 D − dl20G

3FJl3Sy2u

x3
2 D − dl30G f l2

sx1,x2df l3
sx1,x3d, sA14d

where it is introduced

jl1l2l3
= i l1+l2+l3s2l1 + 1d1/2s2l2 + 1d1/2s2l3 + 1d1/2E

0

p E
0

2p

du dv sinu Yl10su,vdYl20su,vdYl30su,vd. sA15d

The integration over the product of three spherical harmonics is very well known in quantum mechanics and expressed
through the so-called 3j-symbol of Wigner as follows:

jl1l2l3
= s− 1dps2l1 + 1ds2l2 + 1ds2l3 + 1d

Î4p
Sl1 l2 l3

0 0 0
D2

, sA16d

where the 3j-symbol of Wigner in this particular case takes the following form:

Sl1 l2 l3
0 0 0

D =5s− 1dpF sl1 + l2 − l3d!sl1 − l2 + l3d!s− l1 + l2 + l3d!
s2p + 1d! G1/2

3
p!

sp − l1d!sp − l2d!sp − l3d!
,

if ul1 − l2u ø l3 ø l1 + l2 and if 2p = l1 + l2 + l3 is even,

0, in all other cases.
6 sA17d

Similar procedure for the convolution term on the right-hand side of Eq.(18) for the triplet correlation function produces the
following outcome:

n3

3!
h39sud = −

5

128Î2p3y3 o
l1=0

`

o
l2=0

`

o
l3=0

`

jl1l2l3E
0

` E
0

` E
0

`

dx1 dx2 dx3 x1
2x2

2x3
2FJl1Sy2u

x1
2 D − dl10GFJl2Sy2u

x2
2 D − dl20GFJl3Sy2u

x3
2 D − dl30G

3 E
0

`

dx4 x4
2f l1

sx1,x4df l2
sx2,x4df l3

sx3,x4d. sA18d

The final expression for the three perturber contribution is ultimately found as a sum of Eq.(A14) and Eq.(A18),

n3

3!
h3sud =

n3

3!
h38sud +

n3

3!
h39sud. sA19d

One should notice here that Eqs.(A14) and (A18) contain three and four dimensional integrals that are hard to evaluate
numerically but it is symmetry in the coefficientsjl1l2l3

that allows one to reduce those integrations to two dimensions.
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